Application of the Monte Carlo Method to Pricing Lookback Fixed Option with Stochastic Volatility
Main Article Content
Abstract
Options are a derivative product that trades the right to call and put on an asset at a certain price and during an agreed time. Determining the optimal option price is often difficult due to changes in stock prices. One model that can be used to calculate the price of Lookback Fixed options is the Monte Carlo Method with stochastic volatility of the Heston model, with parameter estimation using Ordinary Least Squares (OLS), and Euer-Maruyama and calculation of the effect of initial stock price, strike, and maturity time. The estimated stock price is then used to calculate the Lookback Fixed option price using the Monte Carlo method. The research results obtained good results with a fairly small error rate. In addition, the analysis of the effect of strike price, strike, and maturity time shows results consistent with option pricing theory.
Article Details

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
Hull J. Options, Futures, and Other Derivatives. Pearson; 2018.
Iskandar B. Transaksi Lindung Nilai Syariah di Pasar Berjangka Komoditi Perspektif Dewan Syariah Nasional. Jurnal Intelektualita: Keislaman, Sosial dan Sains. 2021 apr;10(1):67-82.
Zubedi F, Oroh FA, Aliu MA. Penentuan Harga Call Opsi Eropa dengan Menggunakan Model Black-Scholes, Antithetic Variate dan Binomial. Jurnal Riset dan Aplikasi Matematika (JRAM). 2020 oct;4(2):74.
Babbs S. Binomial valuation of Lookback Options. Journal of Economic Dynamics and Control. 2000;24(11–12):1499- 525.
[Xu J, Zhao H, Zhong Z. Pricing Lookback Options with Dividends. Fourth International Joint Conference on Compu- tational Sciences and Optimization. 2011:1226-31.
Sudding F, Kalla Y. Multinomial method for pricing Lookback Option. Proceedings of the 1st International Confer- ence on Mathematics and Mathematics Education: Advances in Social Science, Education and Humanities Research. 2019;1341.
Sudding FNF, Irsan MYT. Estimating Lookback Price using Monte Carlo Simulation and Binomial Lattice. Journal of Physics: Conference Series. 2021.
Lee H, Ha H, Kong B. Foreign equity lookback options with partial monitoring. Finance Research Letters. 2024;67:105726-6.
Wei T, Yang F, Yu H. Pricing Asian Lookback Option based on Monte Carlo simulation. BCP business & management. 2022;26:775-87.
Chen Y, Li Y. Investigating the difference of optionâ C™s real values between Lookback option and European option based on price models. Highlights in Business, Economics and Management. 2022;4:21-30
Chavas JP, Li J, Wang L. Option pricing revisited: The role of price volatility and dynamics. Journal of Commodity Markets. 2024;33(100381).
Cerrato M. The Mathematics of Derivatives Securities with Applications in MATLAB. The Wiley Finance Series. Wiley; 2012.
Desmettre S, Korn R, Sayer T. Option Pricing in Practice:Heston’s Stochastic Volatility Model. Springer Berlin Heidel- berg; 2015.
Dashti Moghaddam M, Serota RA. Combined multiplicative–Heston model for stochastic volatility. Physica A: Statisti- cal Mechanics and its Applications. 2021 jan;561:125263.
Yan D, Lin S, Hu Z, Yang B. Pricing American options with stochastic volatility and small nonlinear price impact: A PDE approach. Chaos, Solitons & Fractals. 2022;163(112581).
Jiang B. Numerical Methods for Option Pricing. Finance & economics. 2024;1(5).
Nhangumbe C, Sousa E. Numerical solutions of an option pricing rainfall weather derivatives model. Computers & Mathematics with Applications. 2024 jan;153:43-55.
Gao J. Numerical Methods and Computation in Financial Mathematics: Solving PDEs, Monte Carlo Simulations, and Machine Learning Applications. Theoretical and natural science. 2024;55(1):17-23.
Zhang Z. Numerical methods base on trinomial trees for option pricing. Theoretical and natural science. 2024;43(1):113-9.
Glasserman P. Monte Carlo Methods in Financial Engineering. vol. 53 of Stochastic Modelling and Applied Probability. New York, NY: Springer New York; 2003.
Anggraini DP, Lesmana DC, Setiawaty B. Aplikasi Simulasi Monte Carlo untuk Menentukan Nilai Opsi Asia dengan Menggunakan Metode Control Variate pada Komoditas Pertanian. Journal of Mathematics and Its Applications. 2017 jul;16(1):69-82.
Dewi DC, Sumijan S, Nurcahyo GW. Simulasi Monte Carlo dalam Mengidentifikasi Peningkatan Penjualan Tanaman Mawar (Studi Kasus di Toko Bunga 5 Bersaudara Kota Solok). Jurnal Informatika Ekonomi Bisnis. 2020.
Chalimatusadiah C, Lesmana DC, Budiarti R. Penentuan Harga Opsi Dengan Volatilitas Stokastik Menggunakan Metode Monte Carlo. Jambura Journal of Mathematics. 2021 apr;3(1):80-92.
Yahoo. Yahoo Finance: https://finance.yahoo.com; 2022. Accessed at 24 february 2024.