Implementation of Fuzzy Time Series Markov Chain Method using Kernel Smoothing in forecasting the Stock Price of PT. Elnusa Tbk.

Main Article Content

Marcela Mokodompit
Salmun K Nasib
Ismail Djakaria
Nisky Imansyah Yahya
Isran K. Hasan

Abstract

This research aims to apply the Fuzzy Time Series Markov Chain combined with Kernel Smoothing in forecasting stock prices. The Kernel Smoothing technique is used to smooth stock data before the fuzzification process, resulting in more accurate predictions. The research stages include Data Smoothing, Fuzzy interval formation, Fuzzy Logical Relationship and Fuzzy Logical Relationship Group formation, and forecasting using Markov Chain Transition Matrix. Evaluation using MAPE shows a low prediction error rate, with a value of 0.005974257%, so this method is effective for volatile stock data. The implementation of this model is expected to be a reference for investors and analysts in understanding and predicting future stock price movements.

Article Details

How to Cite
Mokodompit, M., Nasib, S. K., Djakaria, I., Yahya, N. I., & Hasan, I. K. (2025). Implementation of Fuzzy Time Series Markov Chain Method using Kernel Smoothing in forecasting the Stock Price of PT. Elnusa Tbk. Indonesian Journal of Computational and Applied Mathematics, 1(1), Pages 18–28. https://doi.org/10.64182/indocam.v1i1.9
Section
Financial Mathematics and Quantitative Economics

References

Sukartaatmadja I, Khim S, Lestari MN. Faktor-faktor Yang Mempengaruhi Harga Saham Perusahaan: Studi Kasus Pada Sub Sektor Perkebunan Yang Terdaftar Di Bursa Efek Indonesia Periode 2016-2020. Jurnal Ilmiah Manajemen Kesatuan. 2023;11(1):21-40.

Wong HL, Wang CC. Fuzzy time series model incorporating predictor variables and interval partition. WSEAS Transactions on Mathematics. 2011;10(12):443-53.

Wajdi S. Pemodelan Harga Saham BSI dengan Metode Fuzzy Time Series Markov Chain. Jurnal Pendidikan Tambusai. 2022;6(1):1715-24.

Astri Frianti A, Respitawulan, Sukarsih I. Prediksi harga Crude Palm OIL (CPO) di Indonesia dengan menggunakan Metode Fuzzy Time Series Markov Chain. Bandung Conference Series: Mathematics. 2023 jan;3(1).

Dinatha R, Uperiati A, Purnamasari DA. Prediksi keuntungan ekspor dengan metode fuzzy time series model Markov chain (studi kasus: Provinsi Kepulauan Riau). Student Online Journal (SOJ) UMRAH-Teknik. 2021;2(2):551-64.

Laily YH, Rakhmawati F, Husein I. Penerapan metode fuzzy time series-markov chain dalam peramalan curah hujan sebagai jadwal tanaman padi. Jurnal Lebesgue: Jurnal Ilmiah Pendidikan Matematika, Matematika dan Statistika. 2023;4(1).

Härdle W. Smoothing Techniques. Springer Series in Statistics. New York, NY: Springer New York; 1991.

Matdoan MY, Talakua MW, Djami RJ. Pemodelan Regresi Quantil Dengan Kernel Smoothing Pada Faktor-faktor Yang Mempengaruhi Penyebaran Api Malaria Di Indonesia:(Quantile Regression Modeling with Kernel Smoothing on Factors Affecting the Spread of Malaria Fire in Indonesia). Uniqbu Journal of Exact Sciences. 2020;1(2):1-9.

Kusumadewi S. Analisis dan Desain Sistem Fuzzy : menggunakan Toolbox Matlab. Yogyakarta: Graha Ilmu; 2002.

Jadmiko P. Peramalan Harga Saham pada Indeks Saham Syariah Indonesia (ISSI) Menggunakan Fuzzy Time Series Markov Chain [Skripsi]. Universitas Islam Yogyakarta; 2018.

Singh SR. A simple method of forecasting based on fuzzy time series. Applied Mathematics and Computation. 2007 mar;186(1):330-9.

Song Q, Chissom BS. Fuzzy time series and its models. Fuzzy Sets and Systems. 1993 mar;54(3):269-77.

Saxena P, Easo S. A New Method for Forecasting Enrollments based on Fuzzy Time Series with Higher Forecast Accuracy Rate. Int J Computer Technology & Applications. 2012;3(3):2033-7.

Isaacson DL, Madsen RW. Markov Chains: Theory and Applications. Wiley Series in Probability and Statistics. Wiley; 1976.

Noh J, Wijono W, Yudaningtiyas E. Model Average Based FTS Markov Chain untuk Peramalan Penggunaan Bandwidth Jaringan Komputer. Jurnal EECCIS (Electrics, Electronics, Communications, Controls, Informatics, Systems). 2015;9(1):31-6.

Tsaur RC. A fuzzy time series-Markov chain model with an application to forecast the exchange rate between the Taiwan and us Dollar. International Journal of Innovative Computing, Information and Control. 2012;8(7(B)):4931-4942.

Most read articles by the same author(s)