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Abstract
In this research, we formulated a predator-prey model by considering cannibalism in the prey and intraspecific
competition on predator population. We found three types of equilibrium points existed under certain condition,
except the extinction of all population equilibrium point. Further, we analyzed the local stability of each equilibrium
point via linearization method. We found that the extinction of all population equilibrium point is always unstable
and the other points locally asymptotically stable under some conditions. Finally, the numerical simulation carried
out to verify the analytical results and to perform the impact of prey cannibalism rate.
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1. Introduction
Predator–prey modeling has evolved as an essential tool in understanding the intricate inter-

actions that govern ecological systems. Early models, such as the Lotka–Volterra equations, laid the
foundation for describing population fluctuations between predators and their prey. Over time, these
models have been refined to incorporate various biological and environmental complexities, including
carrying capacity, time delays, stage structures, and behavioral adaptations. Such advancements have
improved the predictive capabilities of models and enhanced their applicability to conservation man-
agement and ecosystem restoration. Recent developments emphasize integrating external factors such
as disease transmission, habitat heterogeneity, and behavioral responses, which significantly influence
population stability and resilience [1–5]. This growing body of research underscores the importance
of extending classical models to better reflect ecological realities and to provide more accurate insights
for biodiversity management and ecological forecasting.

Cannibalism, defined as the act of consuming individuals of the same species, is a widespread
phenomenon observed across various taxa in both terrestrial and aquatic ecosystems. It manifests in
numerous forms, such as egg cannibalism in the predatory bug Arma custos [6], intraspecific preda-
tion in the invasive zooplanktivore Bythotrephes cederströmii [7], and sexual cannibalism in certain
arachnids and mantids [8]. In aquatic systems, cannibalism occurs in fish and zooplankton, influ-
encing early life stage survival [9], while in amphibians and reptiles, larval cannibalism can reduce
competition under nutrient-limited conditions [10]. In mammals, cannibalistic behavior may emerge
under environmental stressors, including food scarcity [8]. The ecological impacts of cannibalism are
multifaceted—it can regulate population density, alter demographic structures, and modify commu-
nity interactions. The occurrence of cannibalism is often linked to life stage, resource availability,
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and environmental pressures, making it a critical factor in shaping population dynamics and species
survival strategies [6–10].

In recent years, predator–prey models have been expanded to explicitly incorporate cannibalis-
tic interactions, especially among prey populations, to better capture their complex ecological conse-
quences. Mathematical frameworks such as the Leslie–Gower model with prey cannibalism demon-
strate that cannibalism can alter equilibrium stability, potentially transforming a stable system into
one exhibiting periodic oscillations or limit cycles [1, 11]. Other studies indicate that prey canni-
balism may reduce predator density while affecting prey population persistence [12]. Furthermore,
the inclusion of ecological factor such as intraspecific competition within predator population could
present a novel extension to these dynamics. Intraspecific competition between predators for prey
occurs when the predator to prey ratio is large enough, causing individuals in the predator population
to experience decreased fitness due to lack of food [13].

Based on the above discussion, in Section 2 the predator-prey model incorporating cannibalism
on prey and intraspecific competition among predator is developed. In Section 3, we analyze the local
stability each of the equilibrium points. We also carried out some numerical simulations to verify the
analytical results. Finally, the conclusions are given in Section 4.

2. Mathematical Model
In this model construction, we modified the basic Lotka-Volterra model with the presence of

cannibalism in prey population in the last two terms in the first equation of system (1). The term
cN2

α +N
denotes the cannibalism in prey which follows the Holling type II predation term and c1N

represent the conversion of cannibalism into prey birth, respectively. Taking account the intraspecific
competition in the predator population, the model becomes

dN
dt

=rN −a1NP+bN − cN2

α +N
,

dP
dt

=a2NP−mP2 −dP,
(1)

where b < c, N ≥ 0 and P ≥ 0 represent the densities of prey and predator at time t, respectively. The
description of all parameters in system (1) are presented in Table 1.

Table 1. Parameter Model

Parameter Biological interpretation
r Intrinsic grow rate of prey population

a1 Rate of decline of prey population due interaction with predator
b Conversion rate of cannibalism into prey birth
c Rate of cannibalism in prey
α The half-saturation constant of cannibalism
a2 Conversion rate of prey biomass into predator birth
m Death rate due to competition between predator
d Natural death rate of the predator population

3. Analytical Results

The equilibrium point was obtained as follows
dN
dt

=
dP
dt

= 0.

rN −a1NP+bN − cN2

α +N
= 0,

a2NP−mP2 −dP = 0.
(2)
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The equilibrium points are obtained as follows.
1. The extinction of all populations point E0 = (0,0)

2. The extinction of the prey population point EP =

(
0,− d

m

)
which is not defined.

3. The extinction of the predator population point EN =

(
(r+b)α

c− (r+b)
,0
)

, exist when c > r+b.

4. The existence of all populations point E∗ = (N∗,P∗) with P∗ =
a2N∗−d

m
and N∗ satisfies the

quadratic equation

(a1a2)N2 +(cm+a1a2α −a1d − (r+b)m)N −α((r+b)m+a1d) = 0, (3)

with the discriminant value ∆=(cm+a1a2α−a1d−(r+b)m)2+4a1a2α((r+b)m+a1d) is always a
positive value. According to the Descarte’s rule of signs, equation (3) can only have one positive
real root since there is only one sign change.

3.1. Local Stability
The Jacobian matrix for the system (1) is given by

J(N̂,P̂) =

r−a1P̂+b− cN̂(2α + N̂)

(α + N̂)2
−a1N̂

a2P̂ a2N̂ −2mP̂−d

 . (4)

By calculating the Jacobian matrix around the equilibrium point, the local stability at each equilibrium
point is determined as follows.

1. Local stability of equilibrium point E0
By substituting E0 = (0,0) into the Jacobian matrix (4), we obtain

J(E0) =

[
r+b 0

0 −d

]
.

The stability of the equilibrium point E0 is explained in the following theorem

Theorem 1. The equilibrium point E0 = (0,0) is always unstable.

Proof. By solving det(JE0 −λ I) = 0, we obtain

λ1 = r+b dan

λ2 =−d2.

It can be seen that the eigen value λ1 is always positive. Therefore, the equilibrium point E0 =
(0,0) is always unstable. ■

2. Local stability of equilibrium point EN

The Jacobian matrix (4) for EN =

(
(r+b)α

c− (r+b)
,0
)

is

J|EP =


(r+b)((r+b)− c)

c
a1(r+b)α
(r+b)− c

0
d(c− (r+b))−a2(r+b)α

(r+b)− c

 .

Then the stability of the equilibrium of point EN is explained in the following theorem.
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Theorem 2. The equilibrium of point EN =
(

α(d1 −b)
c−b+d1

,0
)

is locally asymptotically stable if d >

a2(r+b)α
(c− (r+b))

.

Proof. By solving det(JE2 −λ I) = 0, we obtain

λ1 =
(r+b)((r+b)− c)

c
,

λ2 =
d(c− (r+b))−a2(r+b)α

(r+b)− c
.

From the existence condition of EN , then λ1 < 0. Therefore, EN is locally asymptotically stable if

d >
a2(r+b)α
(c− (r+b))

. ■

3. Local stability of equilibrium point E∗

By substituting E∗ = (N∗,P∗) to Jacobian matrix (4) we have

J|E∗=(N∗,P∗) =

r−a1P∗+b− cN∗(2α +N∗)
(α +N∗)2 −a1N∗

a2P∗ a2N∗−2mP∗−d

 . (5)

Since P∗ =
a2N∗−d

m
, the Jacobian (5) can be written as

J|E∗ =

[
J11 J12
J21 J22

]
,

where

J11 = r− a1(a2N∗−d)
m

+b− 2cN∗

α +N∗ +
cN∗2

(α +N∗)2 ,

J12 =−a1N∗,

J21 =
(a2N∗−d)a2

m
,

J22 = d −a2N∗.

Then the stability of the E3 equilibrium point is explained in the following theorem.

Theorem 3. The equilibrium point E3 =(N∗,P∗) is locally asymptotically stable if r+b<
cN∗2

(α +N∗)2 −
2cN∗

α +N∗ −
a1(a2N∗−d)

m
.

Proof. The characteristic equation of Jacobian matrix eq. (5) is

λ
2 − trace(J)λ +det(J) = 0, (6)

where the determinant and trace are, respectively given by

det(J) = J11J22 − J12J21

=

(
r+b+

cN∗2

(α +N∗)2 −
2cN∗

α +N∗ −
a1(a2N∗−d)

m

)
(d −a2N∗)
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+a1a2N∗ (a2N∗−d)
m

and

trace(J) = J11 + J22

=

(
r+b+

cN∗2

(α +N∗)2 −
2cN∗

α +N∗ −
a1(a2N∗−d)

m

)
+d −a2N∗.

Using the Routh-Hurwitz criteria, the equilibrium point E∗ is locally asymptotically stable if

satisfies trace(J) < 0 and det(J) > 0. Since a2N∗ − d > 0, then if r + b <
cN∗2

(α +N∗)2 − 2cN∗

α +N∗ −
a1(a2N∗−d)

m
, we have trace(J)< 0 and det(J)> 0. Therefore, E∗ is locally asymptotically stable.

■

3.2. Numerical Simulation
In this section, the dynamics of the model (1) are discussed numerically using Python software

and the 4th order Runge-Kutta method. Based on the previous results, there is one undefined point and
three points that are locally stable by considering the stability conditions. This numerical simulation
was carried out to confirm the analytical results and to show the impact of prey cannibalism rate to
the system. Using hypothetical parameter values, as in Table 2, we perform the following numerical
simulations.

Table 2. Parameter Values

Simulations r a1 a2 b c α d m
Simulation 1 0.3 0.2 0.1 0.1 0.6 0.1 0.1 0.1
Simulation 2 0.3 0.2 0.1 0.1 0.2 0.1 0.1 0.1
Simulation 3 0.3 0.2 0.1 0.1 - 0.1 0.1 0.1

The first simulation begins by selecting parameter values in Simulation 1 in Table 2. Based
on the values, we have an unstable equilibrium point E0 = (0,0) and a locally asymptotically stable

equilibrium point EN = (0.2,0) since 0.1= d >
a2(r+b)α
(c− (r+b))

= 0.02. A phase portrait in Figure 1(a) show

that all solutions tend to EN = (0.2,0). Thus, it proves that Theorem 1 and Theorem 2 are satisfied.
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0.0
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)
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E∗ ≈ (2.047, 1.047)

(a) Phase portrait around EN (b) Phase portrait around E∗

Figure 1. Phase portrait of model (1) using parameter values as in Table 2
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If we decrease the value of cannibalism rate to 0.2 and other parameter values are fixed as
in Simulation 2 in Table 2, we have an interior equilibrium point E∗ = (2.047,1.047) with the eigen
values λ1,2 =−0.0568±0.2014I. With three initial values, all solutions converge to E∗ = (2.047,1.047)
as shown in Figure 1(b).

The latest simulation is given to show numerically the impact of prey cannibalism rate c us-
ing parameter values Simulation 3 in Table 2 and the rate of cannibalism in prey varied with c ∈
[0.1,0.2,0.3,0.4,0.5,0.6]. In Figure 2, we observe the dynamical behavior of model (1) when c in-
creases. It is shown that as c increases, both prey and predator population decreases.
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Figure 2. The impact of cannibalism rate in prey with different values of c

4. Conclusion
This research investigated the dynamics of the predator-prey model with cannibalism in prey and

intraspecific competition on predator. The model has three equilibrium points where the extinction
of all populations point always unstable and the other equilibrium points, i.e. the extinction of the
predator population point and the existence of all populations point are conditionally asymptotically
stable. We also observe the impact of prey cannibalism rate to the dynamics behavior of model (1).
For future work, ones can analyze the global stability of the model.
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