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Abstract
This article studies the Modified Leslie-Gower model with constant business harvesting on the prey and functional
response of Holling Type II. This approach is more realistic in several phenomena, one of which is in the phenomenon
of rice fields, jali snakes, and owls. The research method begins by determining the assumptions for constructing
models, stability analysis, and numerical simulations. Analysis of the equilibrium points was carried out to deter-
mine the condition of its stability locally using the Jacobian approach and the Routh-Hurwitz criteria by obtaining
five existing points. Analysis of stability using the Jacobian matrix shows that the equilibrium point is an asymp-
totic node in certain conditions. Numerical simulations are carried out to determine the suitability of the results
of the analysis using the software Maple and Python. Numerical simulation results show differences in the value
of environmental carrying capacity affect changes in system solutions. Thus, the change in the value of carrying
capacity does not always produce the same stability because the stability of the system depends on the sensitivity of
the parameter to the overall dynamic structure. This finding provides a foundation for the management of biological
resources, especially in controlling harvesting so that the population remains balanced.
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1. Introduction
Ecology is the science that studies interactions between living things and their environment.

These interactions form an ecosystem, which is an ecological system based on the reciprocal relation-
ship between organisms and their environment [1]. Mathematical models in ecology help explain
population interaction issues. One such model is the predator-prey model, introduced by Alfred Lotka
in 1925 and Vito Volterra in 1926. This model is known as the Lotka-Volterra model [2]. The in-
terplay between predator and prey species in ecosystems is a complicated biological phenomenon
that has garnered academic attention across multiple disciplines, including ecology and mathematics
[3–5].

According to the Lotka-Volterra model, a prey population grows exponentially in the absence of
a predator population. Thus, the prey population will continue to increase indefinitely. In 1948, Leslie-
Gower modified the Lotka-Volterra predator-prey model, with predator population growth following
a logistic model. The environmental carrying capacity parameter of the predator population was
changed to be proportional to the number of available prey. This model is called the Leslie-Gower
predator-prey model [6]. The main element of the predator-prey interaction model is the functional
response, which depends solely on the density of the prey population [7]. Holling introduced three
types of functional responses: Type I, II, and III [8].
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The dynamics of predators and prey are influenced by the effects of harvesting, a tool used to
control the overgrowth of certain organisms. There are three possible harvesting approaches: constant
yield harvesting, constant effort harvesting, and Michaelis-Menten type harvesting [9]. One approach
used in this study is constant effort harvesting. This approach is considered more realistic in some
cases that depend on actual catches, such as in the fisheries sector, poaching, or pest control based
on population detection. One real-world example in environmental management is the population
growth of rice field rats (Rattus argentiventer), known as one of the main pests of rice plants. Uncon-
trolled rice field rat attacks can cause significant economic and ecological losses, as rats have a very
high reproductive capacity and cause extensive damage to crops. Consequently, additional strategies
are needed to control rat populations, one of which is through a harvesting approach.

In the natural food chain, rats have natural enemies: the jali snake (Ptyas korros) and the owl
(Tyto alba). Ptyas korros is used as a predator against rats that damage crops and harm farmers [10].
Owls are very effective in controlling field rats because they require low costs, little energy, cause
no environmental damage, and are easy to implement in communities [11]. Rats and snakes are
usually modeled using the Holling type II functional response, which includes the predation saturation
factor. In contrast, owls as super predators are modeled using a modified Leslie–Gower approach. This
approach does not explicitly include saturation factors in the Holling functional response but considers
them implicitly through carrying capacity, which depends on predator numbers. Thus, owl population
growth slows and approaches zero as it reaches its maximum capacity, which depends on predator
numbers, without factoring in capture or handling time as in Holling type II. The interaction of rats,
snakes, and owls involves three species in an ecosystem. These interactions can be formulated into a
predator-prey model, as in Listyana et al. [12] in their study, "Bifurcation Analysis in a Mathematical
Model of Predator-Prey with Two Predators."

Several previous researchers have discussed the Modified Leslie-Gower three-species model with
harvesting on prey, as conducted by Suryanto et al. [13], which is related to the modified logistic
model by adding two important components: harvesting on prey and the presence of feedback control.
Other studies have also discussed the population dynamics of predator-prey using the Modified Leslie-
Gower model and the Holling type II functional response conducted by Aziz-Alaoui and Okiye [14] that
shows the solution of this model is limited (bounded) where the population will not grow infinitely and
shows global stability for the interior equilibrium point. The author uses the Holling type II functional
response because the jali snake, as a predator, has a handling time, so it cannot prey indefinitely. The
Holling type II functional response has been studied in research conducted by Liu and Chen [15]. This
research demonstrates that periodic disturbances in nature can cause significant changes in animal
population dynamics, resulting in complex and chaotic behavior.

Based on this background, the authors are interested in mathematically examining predator-
prey interactions among three species in rice fields: the rice rat (Rattus argentiventer), the barn snake
(Ptyas korros), and the barn owl (Tyto alba). This study uses the modified Leslie-Gower approach and
the Holling Type II functional response. The model also accounts for harvesting of the prey population.
The research began with a literature review to define the phenomenon under investigation. It then
involved constructing the model, determining the equilibrium point, analyzing stability, conducting
numerical simulations, and drawing conclusions. The research is entitled "Dynamic Analysis of the
Modified Leslie-Gower Model with Harvesting of Prey and Holling Type II Functional Response".

2. Model Formulation
2.1. Predator-prey model

The modified Leslie-Gower model with two species is a development of research by Aziz-Alaoui
and Okiye [14] that examines ecosystem dynamics in a model that has been modified from the Leslie-
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Gower model given by

dx
dt

= rx−bx2 − αxy
x+K

,

dy
dt

= sy
(

1− βy
x+ e

)
.

(1)

The variables x and y represent the population densities of the prey species and the predator species
respectively at time t. The variables in this model include the growth of prey (r), the parameter of
the extent to which the environment provides protection for prey (K), the capture coefficient (q), the
harvesting effort (H), predation on prey (α), the growth rate of predator (s), the maximum value of
the reduction in the predator population due to competition between individuals for prey (β), and the
contribution of the environment in providing protection for predator (e).

The predator-prey model with a Holling type II functional response has been studied by Liu and
Chen [15] as follows.

dx
dt

= rx
(

1− bx
K

)
− αxy

ax+1
,

dy
dt

=
βxy

ax+1
−µy.

(2)

The variables in this model include the growth of prey (r), competition between prey individuals (b),
environmental carrying capacity (K), prey saturation level (a), predation on prey (α), the maximum
value of population reduction of predator due to competition between individuals to obtain prey (β),
and natural mortality of predator (µ)

The harvesting element in prey refers to research by Suryanto et al. [13] that examines linear
harvesting in prey with a constant effort harvesting type and the presence of feedback control. The
model is stated as follows:

dx
dt

= rx
(

1− x
K
−ay

)
−Hx,

dy
dt

= − ey+Cx,
(3)

where x ≥ 0, y ≥ 0. The variables in this model include the harvest rate (H), natural mortality (e),
predation on prey (a), the positive parameter feedback control (C), and the environmental carrying
capacity (K).

2.2. Research methods
In the research process, it is necessary to use several methods to achieve research objectives.

a. Linearization
Linearization is the process of converting a system of nonlinear differential equations into a sys-
tem of linear differential equations. Linearization is performed to determine the behavior of the
system around the equilibrium point. The results of this linearization are presented in the form
of a Jacobian matrix. Carl Gustav Jacob Jacobi (1804–1851), a German analyst, introduced the
Jacobian matrix. The Jacobian matrix is a matrix whose elements are the first partial derivatives
of several functions used to analyze the local stability of a system’s equilibrium point [2]. Given
a system of nonlinear differential equations expressed as:

dx
dt

= F(x,y,z),
dy
dt

= G(x,y,z), and
dz
dt

= H(x,y,z). (4)
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The Taylor series of a real function f (x) can be expressed as follows:

f (x) = f (x0)+
f ′(x0)

1!
(x− x0)+

f ′′(x0)

2!
(x− x0)

2 + . . .+
f (n)(x0)

n!
(x− x0)

n +Rn(x) (5)

In eq. (5), all the nonlinear terms and the remainder term Rn(x) is assumed to be η(x). Assume
that the function in eq. (5) has continuous partial derivatives at the point (x0,y0,z0). Then the
Taylor series of the functions F(x,y,z),G(x,y,z) and H(x,y,z) can be written as follows:

F(x,y,z) = F(x0,y0,z0)+Fx(x0,y0,z0)(x− x0)+Fy(x0,y0,z0)

(y− y0)+Fz(x0,y0,z0)(z− z0)+η1(x,y,z),

G(x,y,z) = G(x0,y0,z0)+Gx(x0,y0,z0)(x− x0)+Gy(x0,y0,z0)

(y− y0)+Gz(x0,y0,z0)(z− z0)+η2(x,y,z),

H(x,y,z) = H(x0,y0,z0)+Hx(x0,y0,z0)(x− x0)+Hy(x0,y0,z0)

(y− y0)+Hz(x0,y0,z0)(z− z0)+η3(x,y,z),

(6)

where F(x0,y0,z0) = G(x0,y0,z0) = H(x0,y0,z0) = 0 and
dx
dt

=
d(x− x0)

dt
,

dy
dt

=
d(y− y0)

dt
,

dz
dt

=

d(z− z0)

dt
. Then the equation is reduced to the matrix form below:

d
dt

x− x0
y− y0
z− z0

=

Fx(x0,y0,z0) Fy(x0,y0,z0) Fz(x0,y0,z0)
Gx(x0,y0,z0) Gy(x0,y0,z0) Gz(x0,y0,z0)
Hx(x0,y0,z0) Hy(x0,y0,z0) Hz(x0,y0,z0)

x− x0
y− y0
z− z0

 +

η1(x,y,z)
η2(x,y,z)
η3(x,y,z)

 . (7)

Then the Jacobi matrix is obtained as follows:

J(x,y,z) =


∂F(x0,y0,z0)

∂x
∂F(x0,y0,z0)

∂y
∂F(x0,y0,z0)

∂ z
∂G(x0,y0,z0)

∂x
∂G(x0,y0,z0)

∂y
∂G(x0,y0,z0)

∂ z
∂H(x0,y0,z0)

∂x
∂H(x0,y0,z0)

∂y
∂H(x0,y0,z0)

∂ z

 . (8)

b. Eigenvalues and Eigenvectors

Definition 1. [16] If A is a matrix of size n× n such that a nonzero vector x in Rn is called an
eigenvector of A. If x is a scalar multiple of x, which can be expressed as follows

Ax = λx. (9)

for an arbitrary scalar λ is called the eigenvalue of A and x is called the eigenvector of A.

The eigenvalue of a matrix A of size n×n, then eq. (9) can be rewritten as,

Ax = λ Ix.
Ax−λ Ix = 0.

(A−λ I)x = 0.

(10)

Where I is the identity matrix. In eq. (10) there is x which has a non-zero solution, so it can be
obtained if and only if,

det(A−λ I) = 0. (11)

Equation (11) is the characteristic equation of the matrix A and the scalar λ is the eigenvalue of
the matrix A.
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This research is a literature study that discusses concepts and theories through various library sources
related to the problem, taken through numerical calculations using Maple 21 software. The following
is the research design:

1. Literature Study
At this stage, the author conducted a literature study of ecological phenomena related to in-
teractions and behavior between populations based on sources from scientific journals, books,
encyclopedias, and previous research articles related to the problem being discussed. Examples
include analysis of existing theories and previous research results.

2. Model Construction
In this stage, the author constructed a model using several literature sources on the predator-
prey system, which was then developed into a three-species Modified Leslie Gower model with
prey harvesting and a Holling Type II functional response.

3. Determining the Equilibrium Point
In this stage, the author determined the equilibrium point of the three-species Modified Leslie
Gower predator-prey model with prey harvesting using the Holling Type II functional response.
The equilibrium point solution was obtained by zeroing the right-hand and left-hand sides of
each equation.

4. Equilibrium Point Stability Analysis
In this stage, the author analyzed the model to evaluate the stability of the equilibrium point.
This model is called a nonlinear differential equation, so it is necessary to first linearize the model
equations. After constructing the Jacobian matrix, the next step is to determine the stability of
the equilibrium point using the eigenvalue criterion or the Routh-Hurwitz criterion.

5. Numerical Simulation
In this stage, the author conducted numerical simulations to model and analyze the stability
behavior around the equilibrium point in the predator-prey model using Python. This simulation
was also used to confirm the suitability of the analytical results of the predator-prey model
stability with the Holling Type II Response Function.

6. Conclusion
In this stage, the author drew conclusions from the results of the stability and numerical anal-
ysis of the behavior of the modified Leslie Gower predator-prey model of three species with
harvesting on the prey using the Holling Type II Response Function.

3. Analytical Results
3.1. Model Construction

The predator-prey population interaction model is constructed as follows:
• Population growth rate of prey (field rat)

The population of prey is denoted as x at time t. The logistic population growth is rx
(

1− x
K

)
with an intrinsic growth rate of r and an environmental carrying capacity of K. The rat popula-
tion also experiences losses due to predation by predators of

αxy
1+ax

. This term follows a Holling

type II functional response, which takes into account the limited ability of predators to handle
prey. The parameter α represents the predator attack rate, a indicates the predation saturation
level, and the harvesting activity of prey is H. The growth rate of prey can be written as follows:

dx
dt

= rx
(

1− x
K

)
− αxy

1+ax
−Hx. (12)

• Population growth rate of predator (jali snake)
The population of predator is expressed as y at time t. The population growth of predator is
derived from the consumption of prey of

ηxy
1+ax

, with η being the biomass conversion efficiency
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and a the predation saturation level. The jali snake population also experienced a decline due

to natural mortality of µ. In addition, there was predation by jali snakes on owls of
βyz

1+by
with

an owl attack rate of β and a predation saturation level of b. The population growth rate of a
predator can be written as follows:

dy
dt

=
ηxy

1+ax
−µy− βyz

1+by
. (13)

• Population growth rate of a super predator (owl)
The population of a super predator is denoted as z at time t. The growth of the owl population is

assumed to follow the Modified Leslie–Gower form of sz
(

1− z
e+ y

)
, where s is the growth rate

of the owl, e is the environmental contribution in providing protection for the predator, and e+y
represents the environmental carrying capacity, which depends on the amount of food available
to the predator (jali snake) population. The population growth rate of a super predator can be
written as follows:

dz
dt

= sz
(

1− z
e+ y

)
. (14)

3.2. Equilibrium Point
The equilibrium point in the system of equations (1), (2), (3) can be obtained by making the

right-hand side of each equation equal to zero, then:[
r
(

1− x
K

)
− αy

1+ax
−H

]
x = 0,[

ηx
1+ax

−µ − β z
1+by

]
y = 0,[

s
(

1− z
e+ y

)]
z = 0.

Thus, we obtain
a) The equilibrium Point E1 = (0,0,0) indicates that the prey, predator and super predator popula-

tions are extinct, due to the lack of inter specific interactions that could sustain each other.

b) The equilibrium Point E2 =

(
−K(H − r)

r
,0,0

)
indicates that the predator and super predator

populations are extinct, while the prey population does not become extinct or exists if it meets
the condition H − r < 0, that is, H < r.

c) The equilibrium Point E3 =

(
−K(H − r)

r
,0,e

)
indicates that the predator population is experi-

encing extinction, while the prey and super predator populations are not experiencing extinction
or exist if they meet the conditions H − r < 0, namely H < r.

d) The equilibrium Point E4 =

(
− µ

aµ −η
,
η(−rkaµ + rkη − rµ −KHaµ +KHη)

Kα(aµ −η)2 ,0
)

states that the

population of super predator is extinct, while the population of prey and predator is not extinct

or exists if it meets the conditions aµ < η and
η(−rkaµ + rkη − rµ −KHaµ +KHη)

Kα(aµ −η)2 < 0.

e) The equilibrium Point E∗ = (x∗,y∗,z∗) indicates the state of the prey, predator, and super predator
populations, whether they are not extinct or exist.
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3.3. Equilibrium Point Stability Analysis
Stability analysis is obtained by examining the eigenvalues of the system’s linearization results

using the Jacobian matrix. The stability of the system in equations (1), (2), and (3) is obtained from
five equilibrium points with the following Jacobian matrix:

J(x,y,z) =


r− 2rx

K
− αy

(1+ax)2 −H − αx
1+ax

0

ηy
(1+ax)2

ηx
1+ax

−µ − β z
(1+by)2

−βy
1+by

0
sz2

(e+ y)2 s− 2sz
e+ y

 . (15)

To determine the dynamic behavior of a system of equations analytically, a local stability analysis can
be performed using the following eigenvalues.

1) Stability of Equilibrium Point E1 = (0,0,0)
Substituting x = 0, y = 0, z = 0 into the Jacobian matrix, we obtain

JE1 =

r−H 0 0
0 −µ 0
0 0 s

 (16)

The characteristic equation of the Jacobian matrix JE1 with det(JE1)−λ I = 0 is (r−H−λ )(−µ −
λ )(s−λ ) = 0. Then the eigenvalues λ1 = r−H, λ2 =−µ, and λ3 = s are obtained, so E1 is saddle
point, unstable.

2) Stability of Equilibrium Point E2 =

(
−K(H − r)

r
,0,0

)
Substituting x =−K(H − r)

r
, y = 0, z = 0 into the Jacobian matrix, we obtain

JE2 =


H − r

αK(H − r)
r−aK(H − r)

0

0 − ηK(H − r)
r−aK(H − r)

−µ 0

0 0 s

 (17)

The characteristic equation of the Jacobian matrix JE2 with det(JE2)−λ I = 0 is

(H − r−λ )

(
− ηK(H − r)

r−aK(H − r)
−µ −λ

)
(s−λ ) = 0.

Then the eigenvalues λ1 = H − r, λ2 =− ηK(H − r)
r−aK(H − r)

−µ, and λ3 = s, so that E2 is saddle point,

unstable.

3) Stability of Equilibrium Point E3 =

(
−K(H − r)

r
,0,e

)
Substituting x =−K(H − r)

r
, y = 0, z = e into the Jacobian matrix, we obtain

JE3 =


H − r

αK(H − r)
r−aKH +aKr

0

0 − ηK(H − r)
r−aK(H − r)

−µ −βe 0

0 s −s

 (18)
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The characteristic equation of the Jacobian matrix JE3 with det(JE3)−λ I = 0 is

(H − r−λ )

(
− ηK(H − r)

r−aK(H − r)
−µ −βe−λ

)
(−s−λ ) = 0.

Then the eigenvalues λ1 =H−r,λ2 =− ηK(H − r)
r−aK(H − r)

−µ−βe, and λ3 =−s, so E3 is saddle point,

unstable.

4) Equilibrium Point Stability E4 =

(
− µ

aµ −η
,
η(−rKaµ + rKη − rµ −KHaµ +KHη)

Kα(aµ −η)2 ,0
)

Substituting x =− µ

aµ −η
, y =

η(−rKaµ + rKη − rµ −KHaµ +KHη)

Kα(aµ −η)2 , z = 0 into the Jacobi ma-

trix (15), then we obtain

JE4 =

A11 A21 0
A12 A22 A32
0 0 A33

 , (19)

where

A11 = r−
2r(− µ

aµ −η
)

K
−

α(
η(−rKaµ + rKη − rµ −KHaµ +KHη)

Kα(aµ −η)2 )

(1+a(− µ

aµ −η
))2

−H.

A12 =

η(
(−rKaµ + rKη − rµ −KHaµ +KHη)

Kα(aµ −η)2 )

(1+a(− µ

aµ −η
))2

A21 =

−α(− µ

aµ −η
)

(1+a(− µ

aµ −η
))2

A22 = −
η(− µ

aµ −η
)

(1+a(− µ

aµ −η
))

−µ

A32 =

−β (
η(−rKaµ + rKη − rµ −KHaµ +KHη)

Kα(aµ −η)2 )

(1+b(
η(−rKaµ + rKη − rµ −KHaµ +KHη)

Kα(aµ −η)2 ))

A33 = s

The characteristic equation of the Jacobian matrix JE4 with det(JE4)−λ I = 0 is λ1 = A33, for λ2
and λ3 is obtained from λ 2−T1λ +D1 = 0. With Trace = T1 = A11+A22 and Determinant = D1 =
A11A22 −A12 +A21. Then the eigenvalue is obtained If λ1 < 0 and λ2,λ3 ∈ R with λ2,λ3 < 0, so
that E4 is node, asymptotically stable.

5) Stability of Equilibrium Point E∗ = (x∗,y∗,z∗)
Substituting x = x∗,y = y∗,z = z∗ into the Jacobi matrix, we obtain

JE∗ =

B11 B21 0
B12 B22 B32
0 B23 B33

 . (20)
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where

B11 = r− 2rx∗

K
− αy∗

(1+ax∗)2 −H, B12 =
ηy∗

(1+ax∗)2 ,

B21 =
−αy∗

1+ax∗
, B22 =

ηx∗

1+ax∗
−µ − β z∗

(1+by∗)2 ,

B23 =
sz∗

(e+ y∗)2 , B32 =
−βy∗

1+by∗
,

B33 = s− 2sz∗

e+ y∗
.

The characteristic equation obtained is λ 3 +a1λ 2 +a1λ +a1 = 0, where

a1 = − (B11B22B33),

a2 = B11B22 +B11B33 +B22B33 −B23B32 −B12B21,

a3 = −B11B22B33 +B11B23B32 +B12B21B33.

Based on the Routh Hurwitz criterion, all eigenvalues will be negative if a1 > 0, a3 > 0, a1a2 > a3
then E∗ is asymptotically stable.

4. Numerical Results
Numerical simulations were used to determine changes in dynamic behavior around equilibrium

points and to verify the stability analysis results of the predator-prey model using Python software.The
parameter values used in the simulation are presented in the following table:

Table 1. Parameter Values

Parameters Values Sources
r 2.0 [17]
α 0.6 [18]
a 0.5 [19]
H 0.5 Assumptions
η 0.8 [18]
µ 0.1 [19]
β 0.3 [19]
b 0.6 [20]
s 1 [20]
e 0.5 [20]

Table 2. Stability with a value of K = 0.3

Equilibrium Point Eigen Value Stability Properties
E1(0, 0, 0) λ1 = 1.5, λ2 =−0.1, λ3 = 1 Saddle point, unstable

E2(0.225, 0, 0) λ1 =−1.5, λ2 = 0.06179, λ3 = 1 Saddle point, unstable
E3(0.225, 0, 0.5) λ1 = 1.5, λ2 =−0.1, λ3 = 1 Node, asymptotically stable

E4(0.13333, 1.08641, 0) λ1 =−0.77695, λ2 =−0.07373, λ3 = 1 Saddle point, unstable

In this study, numerical simulations were performed by substituting the parameter values in
Table 1 to determine the stability of the system solution at different environmental carrying capacity
parameter values (K). The dynamic behavior was displayed through phase portraits using Python

software based on the calculation of the stability conditions, namely K <
r(µ +βe)

(r−H)(η −aµ −aβe)
with

the limit K0 = 0.4938. Numerical simulations were performed by taking the values K = 0.3 < K0 and
K = 0.6 > K0.
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Figure 1. Phase Portrait when K = 0.3 with 3 different initial values

a) Numerical simulation with the value of K = 0.3
The simulation results with the parameter value K = 0.3 are shown in full in Table 2. Based
on Table 2, it shows that there are four existing equilibrium points, namely E1,E2, E3,E4 while
the equilibrium point that does not exist is E5 because it has a negative value. There is one
asymptotically stable equilibrium point with the type of equilibrium in the form of a Node,
namely at the equilibrium point E4(0.225,0,0.5). The simulation results with parameter values
in Table 2 when K = 0.3 are illustrated with the python software in The simulation results with
parameter values in Table 1 when K = 0.3 is given by fig. 1.Based on fig. 1 shows a phase portrait
with three different initial values, namely [1.5,0.8,1.7], [1.75,0.6,1.5], and [1.8,0.5,1.3] towards
point E4(0.225, 0, 0.5). Therefore, it can be concluded that the stability of the equilibrium point
E4 is an asymptotically stable node, meaning that the populations of field mice, snakes, and owls
exist or can coexist.
The following is a phaseportrait of the time series when K = 0.3. Based on fig. 2 shows that

Figure 2. Time series when K = 0.6 with t = 100

when the environmental carrying capacity rate is K = 0.3 with initial values [1.5,0.8,1.7] it is
asymptotically stable towards the equilibrium point E4(0.225, 0, 0.5). At the initial value of
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the rice field rat population of 1.5 individuals towards the equilibrium point x = 0.225. The
initial value of the population of the snake jali is 0.8 individuals towards the equilibrium point
y = 0. Then the initial value of the population of the snake jali is 1.7 individuals towards the
equilibrium point z = 0.5. fig. 2 shows the environmental carrying capacity carried out by the
rice field rat of K = 0.11 with the initial population value [1.5,0.8,1.7] stating that the population
of rice field rats, snake jali, and owls can survive side by side or not experience extinction.

b) Numerical simulation with K = 0.6
The simulation results with the parameter value K = 0.6 are shown in full in the following table:

Table 3. Stability with a value of K = 0.3

Equilibrium Point Eigen Value Stability Properties
E1(0, 0, 0) λ1 = 1.5, λ2 =−0.1, λ3 = 1 Saddle point, unstable

E2(0.44999, 0, 0) λ1 =−1.5, λ2 = 0.19387, λ3 = 1 Saddle point, unstable
E3(0.44999, 0, 0.5) λ1 = 1.5, λ2 = 0.04387, λ3 =−1 Saddle point, unstable

E4(0.13333, 1.87654, 0)

λ1 = −0.18923+0.25129I

λ2 = −0.18923−0.251291

λ3 = 1

Saddle point, unstable

E∗(0.426, 0.16172, 0.66172) λ1 =−1.39378, λ2 =−0.04384, λ3 =−0.95231 Node, asymptotically stable

Based on Table 3, it shows that there are four existing equilibrium points, namely E1,E2, E3,E4,E∗.
There is one asymptotically stable equilibrium point with the type of equilibrium in the form of a
Node, namely at the equilibrium point E∗(0.426, 0.16172, 0.66172). The simulation results with
parameter values in Table 1 when K = 0.6 are illustrated with the Python software below.

Figure 3. Phase Portrait when K = 0.6 with 3 different initial values

Based on fig. 3, it shows a phase portrait with 3 different initial values, namely [0.9,2.6,3.2],
[0.7,2.4,2.9], [0.082,2.45,3.1] towards the point E∗(0.426, 0.16172, 0.66172). Therefore, it can be
concluded that the stability of the equilibrium point E∗ is in the form of an asymptotically stable
node, meaning that the populations of field mice, snakes, and owls exist or can coexist.
The following is a numerical simulation of the time series K = 0.6. Based on fig. 4, it shows
that when the environmental carrying capacity rate is K = 0.6 with initial values [1.8,2.3,1.6], it
is asymptotically stable towards the equilibrium point E∗(0.426,0.16172, 0.66172). At the initial
value, the population of field mice is 1.8 individuals towards the equilibrium point x= 0.426. The
population of the initial value of the jali snake is 2.3 individuals towards the equilibrium point
y = 2.537283. Then the population of the initial value of the owl is 1.6 individuals towards the
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Figure 4. Time series when K = 0.6 with t = 100

equilibrium point z = 3.037283.5. In the time series fig. 4, the environmental carrying capacity
of the rice field mice is K = 0.6 with an initial population value of [1.8,2.3,1.6], which states that
the population of rice field mice, jali snakes, and owls can survive side by side or not experience
extinction.

5. Conclusion

A modified Leslie-Gower model of three species with constant effort harvesting on prey and
Holling type II functional response was constructed with phenomena that occur in rice field ecosys-
tems, one of which is the phenomenon of rice field rats, snakes, and owls. Uncontrolled rice field rat
attacks can cause significant losses. Consequently, additional strategies are needed to control the rat
population, one of which is through a harvesting approach. Analysis of the equilibrium points was
carried out to determine the local stability conditions using the Jacobian approach and the Routh-
Hurwitz criterion with the acquisition of five existing points. Stability analysis using the Jacobian
matrix showed that the equilibrium points are locally asymptotically stable nodes under certain con-
ditions. Numerical simulations were carried out to determine the suitability of the analysis results
using software Maple and Python. The results of the numerical simulations showed that differences
in the environmental carrying capacity parameter (K) affected changes in the system solution. Thus,
changes in the value of K do not always result in the same stability, because the stability of the system
depends on the sensitivity parameters to the overall dynamic structure. These findings provide a ba-
sis for managing biological resources, especially in controlling harvesting to ensure that populations
remain balanced.
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